










**On-line training event on equivalent Black Carbon (eBC)** 

Determination of equivalent BC mass concentration from filter absorption photometers (FAPs)

Marco Pandolfi, IDAEA-CSIC marco.pandolfi@idaea.csic.es



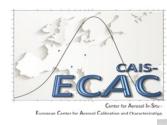























#### In brief:

- "BC" cannot be measured
- There are no standardised methods for black carbon (BC).
- Its concentration is indirectly derived from the measurements of light absorption (from this "black") using FAPs (e.g. Aethalometers, MAAP)
- The absorption from FAPs is converted into "BC" mass concentration mathematically using one predefined constant term (MAC<sub>BC</sub>) used to convert absorption into a mass concentration
- MAC<sub>BC</sub> was initially obtained comparing optical and thermal measurements of filters loaded with refractory carbonaceous material (BC) used as reference.
- BC is a mass concentration equivalent to the mass of the reference BC material needed to explain the measured absorption.

#### **Definitions:**

14) "black carbon" or "BC" means carbonaceous aerosols measured by light absorption;





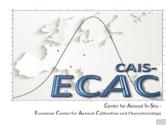




EUROPEAN REFERENCE LABORATORY FOR AIR POLLUTION


















#### In brief:

- The correct terminology is "equivalent black carbon (eBC)"
- "equivalent" and "equivalence" are two different things
- For demonstrating the equivalence of a candidate method (e.g. the Beta-gauge technique) with the reference (gravimetric) method, it is allowed to establish first a site and time dependent calibration factor.
- Using site and time dependent MAC<sub>BC</sub> values would very probably make it possible to demonstrate the equivalence between FAP techniques and the CEN standard method (EN16909) for determining EC.

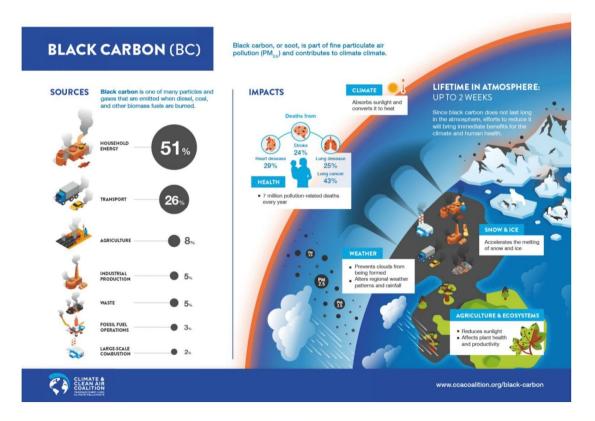














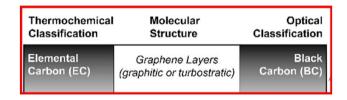



## **DEFINITION OF BLACK CARBON (BC)**

Black Carbon (BC), or elemental carbon (EC), is a product of incomplete combustion of carbon-based fuels (vehicles, wood and biomass burning, open burnings, industrial emissions, shipping, aviation,.....)












#### **DEFINITION OF BLACK CARBON (BC)**

Black carbon (BC), or elemental carbon (EC), is a product of incomplete combustion of carbon-based fuels (vehicles, wood and biomass burning, open burnings, industrial emissions, shipping, aviation,.....)



- Refractory (vapor. temp. 4000 °K)
- Unsoluble in water and organic solvents
- Graphitic SP<sup>2</sup>-bonded carbon atoms
- Strong absorption efficiency in the whole solar spectrum

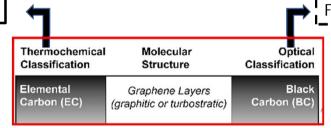








#### **DEFINITION OF BLACK CARBON (BC)**


Black Carbon (BC), or elemental carbon (EC), is a product of incomplete combustion of carbon-based fuels (vehicles, wood and biomass burning, open burnings, industrial emissions, shipping, aviation,.....)

#### BC and EC are distinguished by the measurement methods

The EN 16909 standard method for determining EC

EC is determined by heating to high temperature the sample (PM) in presence of oxygen (for combustion) to determine the amount of pure carbon present. EC refers to carbon in its pure, elemental form.

A reference technique for measuring the mass concentration of EC exists



FAPs (filter absorption photometers; AE33, AE36, MAAP)

BC is indirectly derived through methods (FAPs) that measure the particle light absorption, assuming that BC is the unique absorbing species.

There is no method for measuring "BC" mass concentration at all









FAPs (filter absorption photometers; Aethalometers, MAAP) provide the light absorption coefficient [ $b_{ABS}(\lambda)$ ] that is used to **derive** the BC mass concentration

$$BC = \frac{b_{Abs}}{MAC_{BC}} \qquad \left[\frac{\mu g}{m^3}\right] = \frac{[Mm^{-1}]}{\left[\frac{m^2}{g}\right]}$$

The softwares of FAPs apply a constant  $MAC_{BC}$  to derive BC.

**MAC**<sub>BC</sub> obtained initially by comparing optical and thermal measurements of filters loaded with refractory carbonaceous material used as reference.









FAPs (filter absorption photometers; Aethalometers, MAAP) provide the light absorption coefficient [ $b_{ABS}(\lambda)$ ] that is used to **derive** the BC mass concentration

$$eBC = \frac{b_{Abs}}{MAC_{BC}} \qquad \left[\frac{\mu g}{m^3}\right] = \frac{[Mm^{-1}]}{\left[\frac{m^2}{g}\right]}$$

**eBC** 

= mass concentration of the reference BC material (that was used to estimate the MACBC) needed to explain the measured absorption

eBC is for particle light absorption the same as "CO<sub>2</sub>-eq" is for Global Warming Potential. CO<sub>2</sub>-eq is a metric measure that converts amounts of other gases to the equivalent amount of carbon dioxide with the same global warming potential as these other gases.







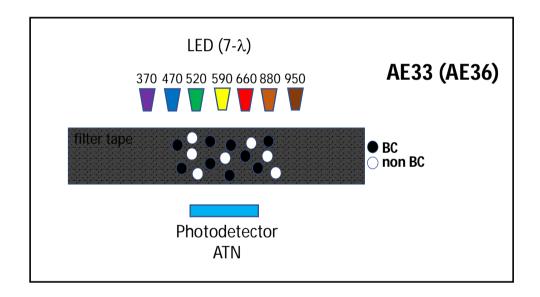


FAPs (filter absorption photometers; Aethalometers, MAAP) provide the light absorption coefficient [ $b_{ABS}(\lambda)$ ] that is used to **derive** the BC mass concentration

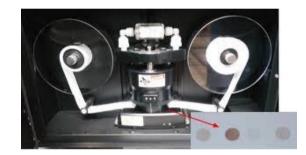
$$eBC = \frac{b_{Abs}}{MAC_{BC}}$$

Petzold et al. (2013)

"Equivalent black carbon (eBC) should be used instead of black carbon for data derived from optical absorption methods, together with a suitable MAC for the conversion of light absorption coefficient into mass concentration. ..... When reporting eBC, i.e., mass concentration, it is crucial to identify the MAC value used for the conversion..."






**Aethalometers** 

$$eBC = \frac{b_{Abs}}{MAC_{BC}}$$



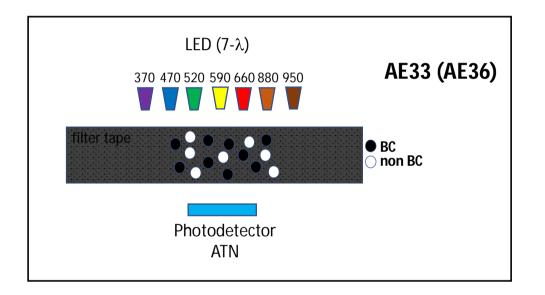
Aethalometers are based on illuminating with LED lights a filter tape where PM is deposited and measuring the attenuation of the light.



Two artifacts:

- Factor loading; Dual-spot technology (Drinovec et al., 2015)
- Optical enhancement factor (multiple-scattering factor)










Aethalometers

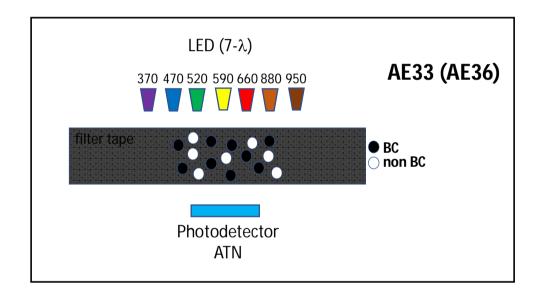
$$eBC = \frac{b_{Abs}}{MAC_{BC}}$$



$$b_{ATN} = b_{ABS} + b_{SCAT,(PM+filter)}$$
Artifact (C)

 Optical enhancement factor (multiple-scattering factor (C))










Aethalometers

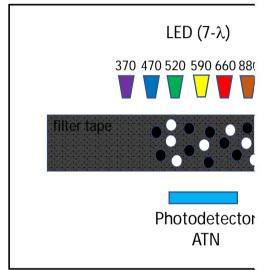
$$eBC = \frac{b_{Abs}}{MAC_{BC}}$$



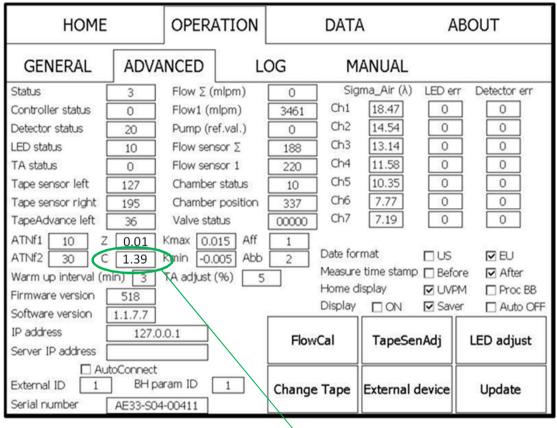
$$b_{ABS} = \frac{b_{ATN}}{C}$$

- Optical enhancement factor (multiple-scattering factor (C))








**Aethalometers** 

$$eBC = \frac{b_{Abs}}{MAC_{BC}}$$

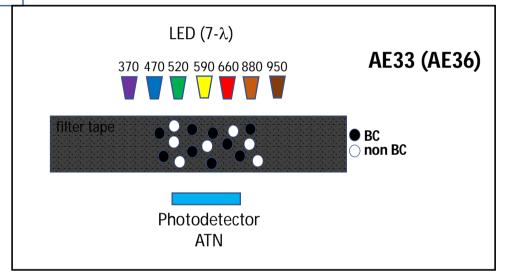


$$b_{ABS} = \frac{b_{ATN}}{C}$$



M8060 recommended filter tape









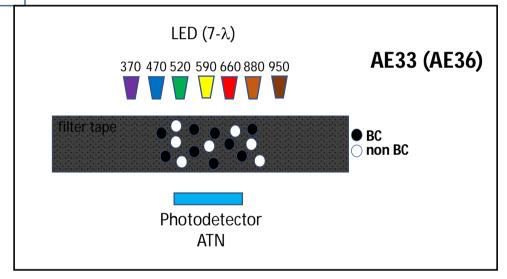

Aethalometers

$$eBC(\lambda) = \frac{b_{Abs}(\lambda)}{MAC_{BC}(\lambda)}$$



$$b_{ABS}(\lambda) = \frac{b_{ATN}(\lambda)}{1.39}$$










**Aethalometers** 

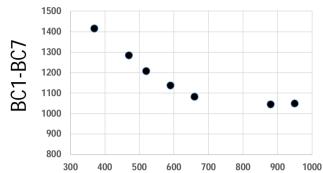
$$eBC(\lambda) = \frac{b_{Abs}(\lambda)}{MAC_{BC}(\lambda)}$$



$$b_{ABS}(\lambda) = \frac{b_{ATN}(\lambda)}{1.39}$$

#### AE33 setup file










Aethalometers

$$eBC(\lambda) = \frac{b_{Abs}(\lambda)}{MAC_{BC}(\lambda)}$$

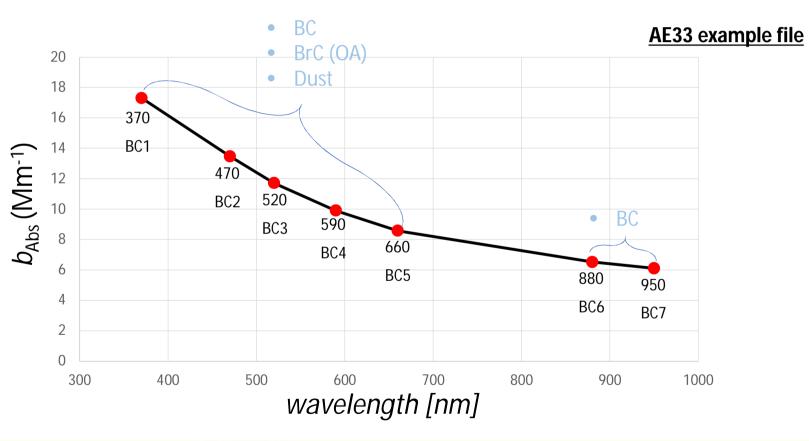


# **AE33** example file

| AM    | AN         | A      | 0     | AP     | AQ     | ,     | AR    | AS     | AT     | AU     | AV     | AW      | Α      | X     | AY     | AZ      | E      | BA    | BB     | BC     | BD     | BE     | BF      | BG     |
|-------|------------|--------|-------|--------|--------|-------|-------|--------|--------|--------|--------|---------|--------|-------|--------|---------|--------|-------|--------|--------|--------|--------|---------|--------|
|       |            |        |       |        |        |       |       |        |        |        |        |         |        |       |        |         |        |       |        |        |        |        |         | _      |
| 8025  |            | ng/m3  |       |        |        | ng/m  |       | 2222   |        | ng/m3  |        |         | ng/m3  |       | 22     | 11 12 2 | ng/m   |       | 0.00   | 2.44   | ng/m3  |        |         | ng/m3  |
| 1104  | 1228       |        | 1415  | 1042   | 1131   | L     | 1285  | 1009   | 1076   | 1208   | 3 9    | 972 102 | 3      | 1138  | 951    | 985     | 5      | 1082  | 963    | 969    | 1049   | 9      | 67 97   | 2 10   |
|       | MAC,BC     |        | 18.47 |        |        |       | 15.54 |        |        | 13.14  | 4      |         |        | 11.58 |        |         |        | 10.35 |        |        | 7.77   | ,      |         | 7.     |
|       | wavelength | 370 nn |       |        |        | 470 n |       |        |        | 520 nm |        |         | 590 nr |       |        |         | 660 ni |       |        |        | 880 nm |        |         | 950 nm |
| POT 1 | SPOT 2     |        |       | SPOT 1 | SPOT 2 |       |       | SPOT 1 | SPOT 2 |        | SPOT 1 | SPOT 2  |        |       | SPOT 1 | SPOT 2  |        |       | SPOT 1 | SPOT 2 |        | SPOT 1 | SPOT 2  |        |
|       |            | BC1    |       | BC21   | BC22   | BC2   |       | BC31   | BC32   | ВС3    | BC41   | BC42    | BC4    |       | BC51   | BC52    | BC5    |       | BC61   | BC62   | BC6    | BC71   | BC72    | BC7    |
| 2839  |            |        | 2843  |        |        |       | 2524  |        |        |        |        | 340 279 |        | 2342  |        |         |        | 2335  |        |        |        |        |         |        |
| 2772  | 2911       |        | 2779  | 2580   | 2809   | 9     | 2584  | 2509   | 2855   | 2513   | 3 23   | 343 279 | 1      | 2346  | 2339   | 2946    | 5      | 2342  | 2172   | 2658   | 2173   | 23     | 10 3014 | 4 23   |
| 3601  | 3340       |        | 3615  | 3239   | 3177   | 7     | 3248  | 3070   | 2989   | 3078   | 3 28   | 351 280 | 6      | 2857  | 2778   | 2873    | 3      | 2784  | 2596   | 2322   | 2598   | 26.    | 58 2610 | 0 26   |
| 2973  | 2487       |        | 2988  | 2748   | 2417   | 7     | 2759  | 2598   | 2279   | 2600   | 5 24   | 113 211 | 9      | 2420  | 2368   | 2181    | 1      | 2374  | 2171   | 1608   | 2174   | 22     | 17 167  | 5 22   |
| 3015  | 3279       |        | 3035  | 2747   | 3094   | 1     | 2760  | 2625   | 3074   | 2636   | 5 24   | 186 301 | 1      | 2495  | 2436   | 3146    | 5      | 2444  | 2322   | 2912   | 2326   | 23     | 85 305  | 6 23   |
| 2335  | 1480       |        | 2353  | 2163   | 1572   | 2     | 2175  | 2041   | 1384   | 2051   | 1 18   | 121     | 8      | 1899  | 1849   | 1219    | Э      | 1856  | 1631   | 490    | 1634   | 16     | 81 65   | 8 16   |
| 2356  | 2032       |        | 2376  | 2235   | 2092   | 2     | 2249  | 2123   | 2017   | 2135   | 5 19   | 983 183 | 3      | 1992  | 1945   | 1918    | 3      | 1953  | 1819   | 1427   | 1823   | 18     | 85 1698 | 8 18   |
| 2704  | 3417       |        | 2731  | 2485   | 3148   | 3     | 2503  | 2437   | 3256   | 2453   | 3 23   | 322     | 7      | 2325  | 2319   | 3491    | 1      | 2330  | 2220   | 3459   | 2225   | 23     | 09 365  | 8 2    |
| 1966  | 869        |        | 1987  | 1893   | 1014   | 1     | 1908  | 1770   | 796    | 1783   | 3 16   | 68      | 0      | 1653  | 1578   | 608     | 3      | 1586  | 1402   | -166   | 1409   | 14     | 37 -4   | 7 14   |
| 2491  |            |        | 2520  |        |        |       | 2338  |        |        |        |        | 100 234 |        | 2114  |        |         |        | 2108  |        |        |        |        |         |        |
| 2241  | 1919       |        | 2269  | 2132   | 1879   | 9     | 2153  | 2041   | 1792   | 2058   | 3 19   | 908 173 | 3      | 1921  | 1891   | 1791    | 1      | 1903  | 1731   | 1280   | 1736   | 18     | 00 147  | 2 18   |
| 1325  | 1458       |        | 1836  | 1328   | 1412   | 2     | 1761  | 1308   | 1398   | 1681   | 1 13   | 300 134 | 4      | 1628  | 1273   | 1255    | 5      | 1546  | 1279   | 1220   | 1473   | 12     | 72 119  | 3 14   |
| 1524  | 1693       |        | 2115  | 1576   | 1679   | 9     | 2092  | 1527   | 1521   | 1963   | 3 14   | 149 140 | 8      | 1815  | 1464   | 1478    | 3      | 1779  | 1462   | 1461   | 1685   | 14     | 88 145  | 0 17   |
| 1562  | 1749       |        | 2170  | 1584   | 1665   | 5     | 2105  | 1532   | 1566   | 1971   | 1 15   | 507 153 | 3      | 1889  | 1458   | 1391    | 1      | 1772  | 1516   | 1419   | 1747   | 14     | 98 134  | 7 1    |
| 2142  | 2300       |        | 2980  | 2057   | 2144   | 1     | 2736  | 2040   | 2111   | 2627   | 7 19   | 952 201 | 8      | 2450  | 1892   | 1875    | 5      | 2301  | 1914   | 1810   | 2208   | 19     | 25 185  | 9 2    |
| 2545  | 2848       |        | 3548  | 2436   | 2544   | 1     | 3243  | 2353   | 2357   | 3033   | 3 22   | 279 221 | 3      | 2863  | 2241   | 2199    | 9      | 2729  | 2234   | 2119   | 2578   | 22     | 13 213  | 2 2    |
| 2283  | 2500       |        | 3187  | 2213   | 2306   | 5     | 2951  | 2157   | 2194   | 2783   | 3 20   | 069 204 | 0      | 2601  | 2006   | 1931    | 1      | 2443  | 2001   | 1848   | 2311   | 20     | 27 190  | 4 2    |
| 2436  | 2983       |        | 3409  | 2303   | 2577   | 7     | 3076  | 2230   | 2501   | 2882   | 2 21   | 152 243 | 8      | 2711  | 2141   | 2384    | 1      | 2612  | 2115   | 2350   | 2449   | 21     | 49 240  | 8 24   |

Drinovec et al., AMT, 2015







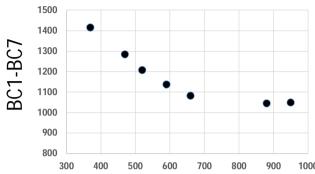



**Aethalometers** 

$$eBC(\lambda) = \frac{b_{Abs}(\lambda)}{MAC_{BC}(\lambda)}$$












Aethalometers

$$eBC6 (880) = \frac{b_{Abs}(880)}{MAC_{BC}(880)}$$



# **AE33** example file

| AM   | AN         | AC    | )     | AP     | AQ     |       | AR    | AS     | AT     | AU     | AV     | AW     |      | AX    | AY     | AZ     | В      | A     | BB     | BC     | BD             | BE    | BF      | BG     |
|------|------------|-------|-------|--------|--------|-------|-------|--------|--------|--------|--------|--------|------|-------|--------|--------|--------|-------|--------|--------|----------------|-------|---------|--------|
|      |            | ng/m3 |       |        |        | ng/m  | 3     |        |        | ng/m3  |        |        | ng/n | m3    |        |        | ng/m3  | 3     |        |        | ng/m3          |       |         | ng/m3  |
| 1104 | 1228       |       | 1415  | 1042   | 1131   |       | 1285  | 1009   | 1076   | 120    | 8      | 972 1  | 023  | 1138  | 951    | . 98   | 5      | 1082  | 963    | 96     | 1045           | 96    | 972     |        |
|      | MAC,BC     |       | 18.47 |        |        |       | 15.54 |        |        | 13.1   |        |        |      | 11.58 |        |        |        | 10.35 |        |        | 7 77           |       |         | -      |
|      | wavelength |       |       |        |        | 470 n |       |        |        | 520 nm | 4      |        | 590  |       |        |        | 660 nr |       |        |        | 7.77<br>880 nm |       |         | 950 nm |
| OT 1 | SPOT 2     |       |       | SPOT 1 | SPOT 2 |       |       | SPOT 1 | SPOT 2 |        | SPOT 1 | SPOT 2 |      |       | SPOT 1 | SPOT 2 |        |       | SPOT 1 | SPOT 2 |                | POT 1 | SPOT 2  |        |
|      |            | BC1   |       | BC21   | BC22   | BC2   |       | BC31   | BC32   | ВСЗ    | BC41   | BC42   | BC4  |       | BC51   | BC52   | BC5    |       | BC61   | BC62   | BC6            | C71   | BC72    | BC7    |
| 2839 |            |       | 2843  | 2522   |        |       | 2524  | 2476   |        |        |        |        | 796  | 2342  |        |        |        | 2335  | 2152   |        | 2153           | 223   |         |        |
| 2772 |            |       | 2779  | 2580   |        |       | 2584  | 2509   |        |        |        |        | 791  | 2346  |        |        |        | 2342  | 2172   |        |                | 231   |         |        |
| 3601 | 3340       |       | 3615  | 3239   | 3177   | 7     | 3248  | 3070   | 2989   | 307    | 8 2    | 851 2  | 806  | 2857  | 2778   | 287    | 3      | 2784  | 2596   | 232    | 2598           | 265   | 8 2610  | 26     |
| 2973 | 2487       |       | 2988  | 2748   | 2417   | 7     | 2759  | 2598   | 2279   | 260    | 6 2    | 413 2  | 119  | 2420  | 2368   | 218    | 1      | 2374  | 2171   | 160    | 2174           | 221   | 7 1675  | 22     |
| 3015 | 3279       |       | 3035  | 2747   | 3094   | ı     | 2760  | 2625   | 3074   | 263    | 6 2    | 486 3  | 011  | 2495  | 2436   | 314    | 6      | 2444  | 2322   | 291    | 2326           | 238   | 3056    | 5 23   |
| 2335 | 1480       |       | 2353  | 2163   | 1572   | 2     | 2175  | 2041   | 1384   | 205    | 1 1    | 891 1  | 218  | 1899  | 1849   | 121    | 9      | 1856  | 1631   | 49     | 1634           | 168   | 658     | 16     |
| 2356 | 2032       |       | 2376  | 2235   | 2092   | 2     | 2249  | 2123   | 2017   | 213    | 5 1    | 983 1  | 833  | 1992  | 1945   | 191    | 8      | 1953  | 1819   | 142    | 1823           | 188   | 1698    | 18     |
| 2704 | 3417       |       | 2731  | 2485   | 3148   | 3     | 2503  | 2437   | 3256   | 245    | 3 2    | 313 3  | 227  | 2325  | 2319   | 349    | 1      | 2330  | 2220   | 345    | 2225           | 230   | 9 3658  | 3 23   |
| 1966 | 869        |       | 1987  | 1893   | 1014   | ı     | 1908  | 1770   | 796    | 178    | 3 1    | 643    | 680  | 1653  | 1578   | 60     | 8      | 1586  | 1402   | -16    | 1405           | 143   | -47     | 7 14   |
| 2491 |            |       | 2520  | 2318   | 2604   | ı     | 2338  | 2251   | 2596   | 226    | 9 2    | 100 2  | 341  | 2114  | 2095   | 254    | 4      | 2108  | 1964   | 224    | 1969           | 202   | 2400    | 20     |
| 2241 | 1919       |       | 2269  | 2132   | 1879   | )     | 2153  | 2041   | 1792   | 205    | 8 1    | 908 1  | 733  | 1921  | 1891   | 179    | 1      | 1903  | 1731   | 128    | 1736           | 180   | 00 1472 | 2 18   |
| 1325 | 1458       |       | 1836  | 1328   | 1412   | 2     | 1761  | 1308   | 1398   | 168    | 1 1    | 300 1  | 344  | 1628  | 1273   | 125    | 5      | 1546  | 1279   | 122    | 1473           | 127   | 72 1193 | 3 14   |
| 1524 | 1693       |       | 2115  | 1576   | 1679   | )     | 2092  | 1527   | 1521   | 196    | 3 1    | 449 1  | 408  | 1815  | 1464   | 147    | 8      | 1779  | 1462   | 146    | 1685           | 148   | 1450    | 17     |
| 1562 | 1749       |       | 2170  | 1584   | 1665   | 5     | 2105  | 1532   | 1566   | 197    | 1 1    | 507 1  | 533  | 1889  | 1458   | 139    | 1      | 1772  | 1516   | 141    | 1747           | 149   | 1347    | 7 17   |
| 2142 | 2300       |       | 2980  | 2057   | 2144   | 1     | 2736  | 2040   | 2111   | 262    | 7 1    | 952 2  | 018  | 2450  | 1892   | 187    | 5      | 2301  | 1914   | 181    | 2208           | 192   | 25 1859 | 22     |
| 2545 | 2848       |       | 3548  | 2436   | 2544   | 1     | 3243  | 2353   | 2357   | 303    | 3 2    | 279 2  | 213  | 2863  | 2241   | 219    | 9      | 2729  | 2234   | 211    | 2578           | 221   | .3 2132 | 2 25   |
| 2283 | 2500       |       | 3187  | 2213   | 2306   | 5     | 2951  | 2157   | 2194   | 278    | 3 2    | 069 2  | 040  | 2601  | 2006   | 193    | 1      | 2443  | 2001   | 184    | 2311           | 202   | 27 1904 | 1 23   |
| 2436 | 2983       |       | 3409  | 2303   | 2577   | 7     | 3076  | 2230   | 2501   | 288    | 2 2    | 152 2  | 438  | 2711  | 2141   | 238    | 4      | 2612  | 2115   | 235    | 2445           | 214   | 19 2408 | 3 24   |

Drinovec et al., AMT, 2015









**Aethalometers** 

$$eBC6 (880) = \frac{b_{Abs}(880)}{MAC_{BC}(880)} \longrightarrow b_{ABS}(880) = \frac{b_{ATN}(880)}{1.39}$$

# **AE33** example file

| AM    | AN         | AO     | AP     | AQ     | -      | AR    | AS    | AT     | AU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AV     | AW      | AX     | AY     | AZ     | BA     | BB           | BC     | BD                                      | BE    | BF      | BG     |
|-------|------------|--------|--------|--------|--------|-------|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|--------|--------|--------|--------|--------------|--------|-----------------------------------------|-------|---------|--------|
|       |            | ng/m3  |        |        | ng/m   | 3     |       |        | ng/m3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        |         | ng/m3  |        |        | ng/m3  |              |        | ng/m3                                   |       |         | ng/m3  |
| 1104  | 1228       | 14     | 15 104 | 2 1131 | _      | 1285  | 1009  | 1076   | The state of the s | 97     | 72 1023 |        | 95:    | 1 985  | -      | <b>82</b> 9  | 63 9   | 1045                                    | 96    | 67 972  |        |
|       | MAC,BC     | 18.    | 47     |        |        | 15.54 |       |        | 13.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,      |         | 11.58  |        |        | 10.    | 35           |        | 7.77                                    |       |         | 7.:    |
|       | wavelength | 370 nm |        |        | 470 ni | m     |       |        | 520 nm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |         | 590 nm |        |        | 660 nm |              |        | 880 nm                                  |       |         | 950 nm |
| POT 1 | SPOT 2     |        | SPOT 1 | SPOT 2 |        | SF    | POT 1 | SPOT 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SPOT 1 | SPOT 2  |        | SPOT 1 | SPOT 2 |        | SPOT 1       | SPOT 2 |                                         | POT 1 | SPOT 2  |        |
| C11   | BC12       | BC1    | BC21   | BC22   | BC2    | ВС    | C31   | BC32   | BC3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | BC41   | BC42    | BC4    | BC51   | BC52   | BC5    | BC61         | BC62   | BC6                                     | C71   | BC72    | BC7    |
| 2839  | 2952       | 28     | 43 252 | 2 2626 | 5      | 2524  | 2476  | 2782   | 2478                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 234  | 10 2796 | 2342   | 2334   | 1 2955 | 23     | 35 21        | 52 25  | 2153                                    | 223   | 30 2794 | 4 22   |
| 2772  | 2911       | 27     | 79 258 | 0 2809 | 9      | 2584  | 2509  | 2855   | 2513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3 234  | 13 2791 | 2346   | 233    | 2946   | 23     | 42 21        | 72 26  | 2173                                    | 231   | 10 3014 | 4 23:  |
| 3601  |            | 36     |        |        |        | 3248  | 3070  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 96 23  | -                                       | -     |         |        |
| 2973  |            | 29     |        |        |        | 2759  | 2598  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 71 16  |                                         |       |         |        |
| 3015  |            | 30     |        |        |        | 2760  | 2625  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 22 29  |                                         |       |         |        |
| 2335  |            | 23     |        |        |        | 2175  | 2041  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        | _      |        |              | 31 4   |                                         | 168   |         |        |
| 2356  |            | 23     |        |        |        | 2249  | 2123  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 19 14  |                                         |       |         |        |
| 2704  |            | 27     |        |        |        | 2503  | 2437  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 20 34  |                                         | 230   |         |        |
| 1966  |            | 19     |        |        |        | 1908  | 1770  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 02 -1  | 100000000000000000000000000000000000000 |       |         |        |
| 2491  |            | 25     |        |        |        | 2338  | 2251  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 64 22  |                                         |       |         |        |
| 2241  |            | 22     |        |        |        | 2153  | 2041  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 31 12  |                                         |       |         |        |
| 1325  |            | 18     |        |        |        | 1761  | 1308  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 79 12  |                                         |       |         |        |
| 1524  |            | 21     |        |        |        | 2092  | 1527  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 62 14  |                                         |       |         |        |
| 1562  |            | 21     |        |        |        | 2105  | 1532  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 16 14  |                                         |       |         |        |
| 2142  |            | 29     |        |        |        | 2736  | 2040  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 14 18  |                                         | 192   |         |        |
| 2545  |            | 35     |        |        |        | 3243  | 2353  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        |              | 34 21  | -                                       | 1700  |         |        |
| 2283  |            | 31     |        |        |        | 2951  | 2157  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |         |        |        |        |        | 43 20        |        |                                         | 202   |         |        |
| 2436  | 2983       | 34     | 09 230 | 3 2577 | 7      | 3076  | 2230  | 2501   | 2882                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 215  | 2438    | 2711   | 214:   | 2384   | 26     | <b>12</b> 21 | 15 23  | 2445                                    | 214   | 49 2408 | 8 24   |

Drinovec et al., AMT, 2015









Aethalometers

$$eBC6 (880) = \frac{b_{Abs}(880)}{MAC_{BC}(880)} \rightarrow b_{ABS}(880) = \frac{b_{ATN}(880)}{1.39}$$

#### **ACTRIS/RI-URBANS HARMONIZATION of C and MAC**









**Aethalometers** 

$$eBC6 (880) = \frac{b_{Abs}(880)}{MAC_{BC}(880)} \rightarrow b_{ABS}(880) = \frac{b_{ATN}(880)}{1.39}$$

$$C^* = \frac{b_{ATN}}{b_{Abs}^{MAAP}} = 2.44$$

$$H^* = \frac{C^*}{C} = \frac{2.44}{1.39} = 1.76$$

$$b_{ABS}^* = \frac{b_{ABS}}{H^*}$$

$$b_{ABS}^*(880) = \frac{BC6 \times 7.77}{1.76}$$

$$eBC^* = \frac{BC6}{1.76}$$

European Center for Aerosol Calibration and Characterization (CAIS-ECAC) European Research Infrastructure ACTRIS-ERIC

T. Müller, M. Fiebig, 2018

ACTRIS In Situ Aerosol: Guidelines for

Manual QC of AE33 Absorption

Photometer Data

https://www.actris-ecac.eu/









#### Aethalometers

$$eBC6 (880) = \frac{b_{Abs}(880)}{MAC_{BC}(880)} - \frac{b_{ABS}(880)}{7.77 \text{ m}^2/\text{g}} = \frac{b_{ATN}(880)}{1.39}$$

$$b_{ABS}^*(880) = \frac{BC6 \times 7.77}{1.76}$$

$$eBC^* = \frac{BC6}{1.76}$$





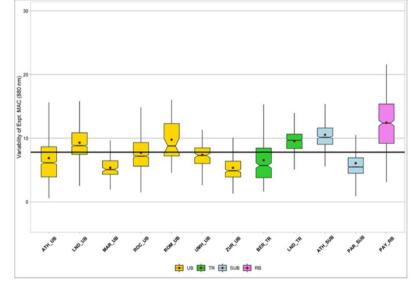




#### **Aethalometers**

$$eBC6 (880) = \frac{b_{Abs}(880)}{MAC_{BC}(880)} \longrightarrow b_{ABS}(880) = \frac{b_{ATN}(880)}{1.39}$$

$$b_{ABS}^*(880) = \frac{BC6 \times 7.77}{1.76}$$


$$eBC^* = \frac{BC6}{1.76}$$

$$eBC^{*,L} = \frac{b_{Abs}^*(880)}{MAC_{BC}^L(880)}$$

$$MAC_{BC}^{L}(880) = \frac{b_{Abs}^{*}(880)}{EC}$$



(LEVEL3 EBAS)



RI-URBANS (Savadkoohi et al. 2024)







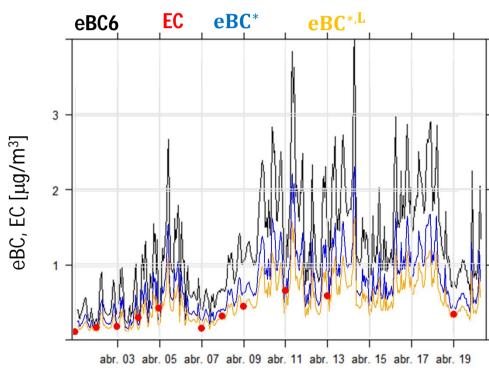


#### **Aethalometers**

$$eBC6 (880) = \frac{b_{Abs}(880)}{MAC_{BC}(880)} \rightarrow b_{ABS}(880) = \frac{b_{ATN}(880)}{1.39}$$

(LEVEL2 EBAS)

(LEVEL3 EBAS)


$$b_{ABS}^*(880) = \frac{BC6 \times 7.77}{1.76}$$

$$eBC^* = \frac{BC6}{1.76}$$

$$eBC^{*,L} = \frac{b_{Abs}^*(880)}{MAC_{BC}^L(880)}$$

$$MAC_{BC}^{L}(880) = \frac{b_{Abs}^{*}(880)}{EC}$$

 $MAC^L$ =10.8 m<sup>2</sup>/g











**Aethalometers** 

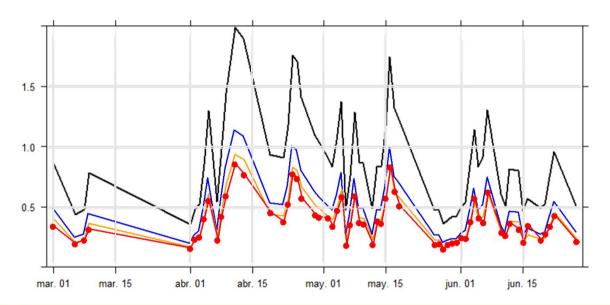
$$b_{ABS}^*(880) = \frac{BC6 \times 7.77}{1.76}$$

$$eBC^* = \frac{BC6}{1.76}$$

$$eBC^{*,L} = \frac{b_{Abs}^*(880)}{MAC_{BC}^L(880)}$$

$$MAC_{BC}^{L}(880) = \frac{b_{Abs}^{*}(880)}{EC}$$

(LEVEL2 EBAS)


(LEVEL3 EBAS)

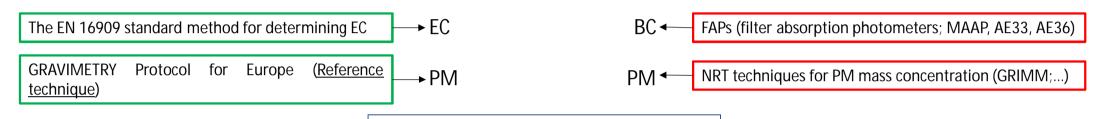
 $\label{eq:ebc_ebc_prop} \begin{array}{c} eBC6 \\ eBC^* \\ < MACL > eBC^{*,L} \end{array}$ 

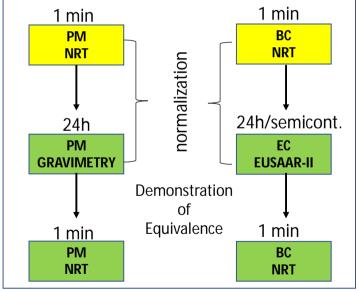
 $MAC_{L}(t) eBC^{*,L}$ 

EC

- eBC\* should be reported from AQMN measurement sites
- If EC is available (UB/RB supersite) the local MAC<sub>L</sub> can be calculated to report  $eBC^{*,L}$
- eBC\*,L can be calculated using an average MAC<sub>L</sub> value or timedependent MAC<sub>L</sub>










- For demonstrating the equivalence of a candidate method (e.g. the Beta-gauge technique) with the reference (gravimetric) method, it is allowed to establish first a site and time dependent calibration factor.
- Using site and time dependent MAC values would very probably make it possible to demonstrate the equivalence between FAP techniques and the CEN standard method (EN16909) for determining EC.













# Aethalometers operation and maintenance



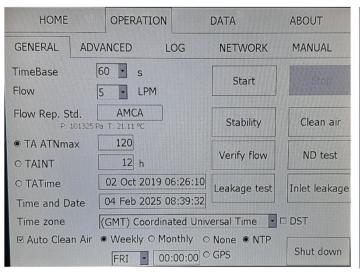


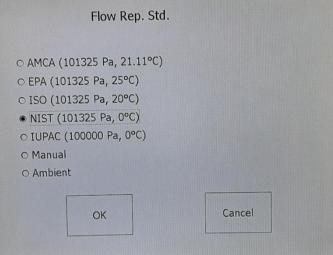


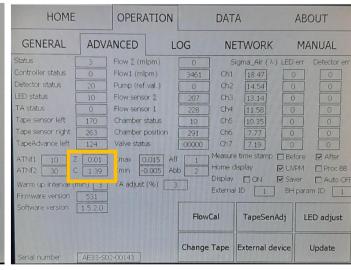


# **GENERAL**

| Aethalometers are stable instruments and do not require frequent maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The most frequent routine maintenances are the filter change, check the inlet flow or inspect the sample line tubing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| It does not require a specialized technician or researcher. A little training is sufficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| It is important to check, for example weekly, the screen to see if error messages have appeared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| The graphical interface of the Aethalometers allows to know if any maintenance is needed and what type of maintenance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Aethalometer manuals are provided by the manufacturer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| https://www.youtube.com/watch?v=ZoUzaqMi2EQ (Aethalometers operation and maintenance)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A number of technical guidance documents and reports about Aethalometers (and other FAPs) are available from Global Atmosphere Watch (GAW; <a href="https://www.gaw-wdca.org/Publications/">https://www.gaw-wdca.org/Publications/</a> ) and ACTRIS ( <a href="https://www.actris-ecac.eu/particle-light-absorption.html">https://www.actris-ecac.eu/particle-light-absorption.html</a> ) that provide comprehensive recommendations and guidelines including operating procedures, aerosol inlets and conditioning, data management among other. The service tools from RI-URBANS project ( <a href="https://riurbans.eu/project/#service-tools">https://riurbans.eu/project/#service-tools</a> ) to assess air quality in accordance with RI-URBANS' advanced air quality monitoring recommendations and with the ACTRIS/GAW protocols for measuring advanced air quality parameters |






#### **MAIN SETTINGS**







- 60 s time resolution
- o 5 LPM
- Flow Rep. Std.
- ATN max 370 nm (120)
- Weekly Auto Clean Air Test
- Z=0.01 (tangential leakage through the edges of the filter tape)
- o C=1.39 (optical enhancement factor; M8060)









# 13.1 Startup screen checks











| Check         | Description                 | Error            | Solution                |
|---------------|-----------------------------|------------------|-------------------------|
| Communication | communication PC to         | hardware         | check cables            |
|               | optical chamber controller  | problem          |                         |
| Instrument    | Obtain data (serial         | hardware         | check cables            |
| data          | number) from the optical    | problem          |                         |
|               | chamber controller          |                  |                         |
| Storage       | CF card operation           | CF card error    | get new CF card and SW  |
| Configuration | read setting from the setup | Setup file error | restore setup file from |
| settings      | file                        |                  | one of the older setup  |
|               |                             |                  | files                   |
| Valves        | operation of the ball valve | ball valve not   | check cables            |
|               |                             | moving           |                         |
| Chamber       | optical chamber movement    | locked chamber   | unlock chamber          |
|               | test                        | hardware error   | service needed          |
| Pump & Flow   | test if pump is working     | pump             | service needed          |
|               |                             | tube             | reconnect tubes         |
|               |                             | connections      |                         |
| Device        | Win CE operating system     | faulty           | get new CF card and SW  |
| monitoring    | test                        | application file |                         |







https://www.actris-ecac.eu/particle-light-absorption.html

- Check the instrument status. Status messages other than normal operation (0 = no error and no warning) should be checked and data flagged accordingly
- Sample pressure and temperature: AE33 does not measure ambient temperature and pressure without connecting to an external sensor.
- o Sample relative humidity at inlet (sensors not built in to AE33) Sample relative humidity varies with ambient relative humidity and the temperature difference between ambient and lab. The sample should be dried so that the sample has RH < 40% already at the instrument inlet. If RH is higher, apply flag 640. Since the AE33 does not measure RH, it is valid to measure the humidity at the inlet of another device that is located at the same common aerosol inlet and under similar conditions.
- o Sample flow: Sample flow through the instrument inlet should be constant. The sample flow should typically be 5 I/min and shall not vary. Flow variations directly affect the signal to noise ratio. Spikes in the flow inevitably lead to outliers in equivalent black carbon concentrations. Periods showing problems with the flow must be flagged.
- o Filter type: It is mandatory to report the filter tape and respective multiple scattering correction factors (C) in level 0 header data which have actually been used while collecting the data. Also make sure to verify the correct multiple scattering correction factor in the instrument settings. The recommended filter type is M8060 with a multi-scattering correction factor 1.39. For other filter types, please check the appendix. Add scattering correction factor and leakage factor to the Nasa-ames header.









| 0 | Check the instrument status | . Statu: |
|---|-----------------------------|----------|
|   | flagged accordingly         |          |

- Sample pressure and temperature:
- Sample relative humidity at inlet (s temperature difference between a inlet. If RH is higher, apply flag 640, that is located at the same commo
- Sample flow: Sample flow through Flow variations directly affect the s concentrations. Periods showing presented.
- o Filter type: It is mandatory to report have actually been used while collections instrument settings. The recommendation check the appendix. Add scattering

| Status      | bit      | status f | lag     | description                                |
|-------------|----------|----------|---------|--------------------------------------------|
| relates to: | position | binary   | decimal |                                            |
| Operation   | 1 and 0  | 00       | 0       | Measurement                                |
|             |          | 01       | 1       | Tape advance (tape advance, fast           |
|             |          |          |         | calibration, warm-up)                      |
|             |          | 10       | 2       | First measurement – obtaining ATN0         |
|             |          | 11       | 3       | Stopped                                    |
| Flow        | 3 and 2  | 00       |         | Flow OK                                    |
|             |          | 01       | 4       | Flow low/high by more than 0.5 LPM or      |
|             |          |          |         | F1 < 0 or F2/F1 outside 0.2 – 0.75 range   |
|             |          | 10       | 8       | Check flow status history                  |
|             |          | 11       | 12      | Flow low/high & check flow status          |
|             |          |          |         | history                                    |
| Optical     | 5 and 4  | 00       |         | LEDs OK                                    |
| Source      |          |          |         |                                            |
|             |          | 01       | 16      | Calibrating LED                            |
|             |          | 10       | 32      | Calibration error (at least one channel    |
|             |          |          |         | ок)                                        |
|             |          | 11       | 48      | LED error (all channels calibration error, |
|             |          |          |         | COM error)                                 |

t-absorption.html

checked and data

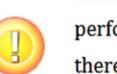
to an external sensor.
humidity and the
ady at the instrument
alet of another device

nin and shall not vary. :k carbon

) header data which factor in the filter types, please






https://www.actris-ecac.eu/particle-light-absorption.html

- Check the instrument flagged accordingly
- Sample pressure and
- o Sample relative humic temperature difference inlet. If RH is higher, a that is located at the
- Sample flow: Sample Flow variations direct concentrations. Perio
- o Filter type: It is mand have actually been us instrument settings. I check the appendix. A

#### 13.2 Instrument status



Normal operation



Warning; Instrument is still performing measurements, but there is/was an issue, that needs to be checked



Instrument stopped. Immediate response needed.

Instrument status: 3

Operation status: Flow status: LED status: Chamber status:

0 - Flow OK 0 - LEDs CK 0 - Chamber OK

3 - Stopped

Filter tape status: 0 - Filter tape OK
Settings status: 0 - Settings OK
Tests status: 0 - No test

External device status: 0 - Connection OK











tе

https://www.actris-ecac.eu/particle-light-absorption.html

- Check the instrument status. Status messages other than normal operation (0 = no error and no warning) should be checked and data flagged accordingly
- Sample pressure and temperature: AE33 does not measure ambient temperature and pressure without connecting to an external sensor.
- o Sample relative humidity at inlet (sensors not built in to AE33) Sample relative humidity varies with ambient relative humidity and the temperature difference between ambient and lab. The sample should be dried so that the sample has RH < 40% already at the instrument inlet. If RH is higher, apply flag 640. Since the AE33 does not measure RH, it is valid to measure the humidity at the inlet of another device that is located at the same common aerosol inlet and under similar conditions.
- o Sample flow: Sample flow through the instrument inlet should be constant. The sample flow should typically be 5 I/min and shall not vary. Flow variations directly affect the signal to noise ratio. Spikes in the flow inevitably lead to outliers in equivalent black carbon concentrations. Periods showing problems with the flow must be flagged.
- o Filter type: It is mandatory to report the filter tape and respective multiple scattering correction factors (C) in level 0 header data which have actually been used while collecting the data. Also make sure to verify the correct multiple scattering correction factor in the instrument settings. The recommended filter type is M8060 with a multi-scattering correction factor 1.39. For other filter types, please check the appendix. Add scattering correction factor and leakage factor to the Nasa-ames header.









| Check the sample inlet flow                               | Once / month                            |
|-----------------------------------------------------------|-----------------------------------------|
| Inspect the sample line tubing                            | Once / month                            |
| Inspect and clean the size selective inlet (if present)   | Once / month                            |
| Inspect and clean the insect screen assembly (if present) | Once / month                            |
| Verify time and date (if not set to update automatically) | Once / month                            |
| Inspect optical chamber, clean if necessary               | Once / 6 months*                        |
|                                                           | *Site dependent, use educated judgment! |
| Flow check (flow verification, flow calibration)          | Once / 6 months                         |
| Clean Air Test                                            | Once / 6 months                         |
| Stability Test                                            | Once / 6 months                         |
| ND filter test                                            | Once / year                             |
| Lubricate optical chamber sliders                         | Once / year                             |
| Install a new filter tape roll                            | As needed.                              |
|                                                           | The instrument issues a warning.        |
| Change by-pass cartridge filter                           | As needed.                              |
|                                                           | Once / year                             |

Standard maintenance procedures are shown in video clips at <a href="http://group.mageesci.com/">http://group.mageesci.com/</a>









https://www.actris-ecac.eu/aerosol-inlets-and-conditioning.html

- Drying technology: four possibilities drying the aerosol sample flow to a RH below 40%.
- Membrane dryers (Nafion): permeable membrane in which water vapor molecules are transported
- Diffusion dryers: water vapor is adsorbed by the silica gel
- Drying by dilution: This method requires the continuous provision of particle-free dry air
- Drying by heating: heating an aerosol sample leads to a reduction of RH in the sampling line

#### PM10 or PM2.5 inlet

- Observational networks, such as WMO-GAW, recommend an upper cut point of 10 µm at ambient conditions (WMO-GAW report 153)
- If EC measurements are available in PM2.5, a PM2.5 inlet for AE33 can be used.
- To measure aerosol particles the air inlet must be generally between 1.5 m and 4 m above the ground (2008/50/EC). Sampling tubes should be made of a conductive, corrosion-resistant material with a low surface roughness (e.g., stainless steel).
- Aethalometers can be connected to a single dedicated inlet or to common inlet through an isokinetic splitter.









https://riurbans.eu/project/#service-tools

Explore all our advanced Service Tools for optimised urban air quality management:

Protocols for the measurement of novel AQ pollutants

ST1:Ultrafine (=nano)-Particle Number Size Distributions (UFP-PNSD)

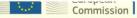
ST2: Black Carbon (BC)

ST3: Offline and Online particulate matter (PM) speciation

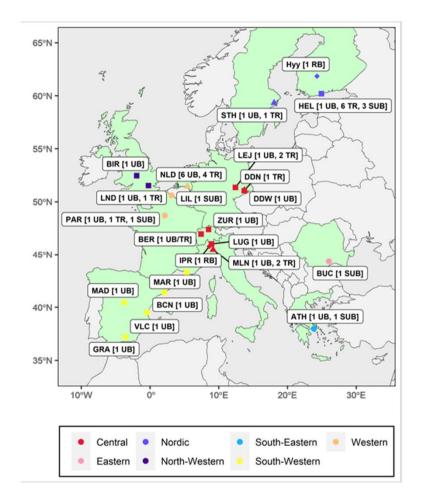
ST4:Oxidative potential (OP) of particulate matter (PM)

ST5: Volatile Organic Compounds (VOCs)

ST6: Ammonia (NH3)


- Methodologies for vertical profiles of pollutants and meteorology
- Methodologies for source apportionment receptor modelling
- Methodologies for urban mapping of novel AQ pollutants
- Methodologies for evaluating the health effects of novel AQ pollutants
- Obtaining emission inventories for novel AQ pollutants
- Modelling methodologies for novel AQ pollutants

#### **Table of Contents**


| A  | BREV  | TATIONS                                                                                  |   |
|----|-------|------------------------------------------------------------------------------------------|---|
| CH | HEMIC | AL SPECIESII                                                                             |   |
| 1  | ARO   | UT THIS DOCUMENT                                                                         |   |
|    |       |                                                                                          |   |
| 2  | DEFI  | NITION OF BLACK CARBON (BC)                                                              |   |
| 3  | MEA   | SUREMENT METHODS FOR DETERMINING EBC                                                     |   |
| 3  | .1    | STATE OF HARMONISATION AND RELEVANT GUIDANCE.                                            |   |
| 3  | .2    | SAMPLING AND CONDITIONING                                                                |   |
|    | 3.2.1 | Sampling                                                                                 |   |
|    | 3.2.2 | 2 Drying                                                                                 |   |
| 3  | .3    | DETERMINATION OF EBC.                                                                    |   |
|    | 3.3.1 | Measurement of absorption                                                                |   |
|    | 3.3.2 | 2 Determination of eBC mass concentration                                                |   |
|    |       | MONIZATION OF ABSORPTION MEASUREMENTS AND EBC DETERMINATIONS                             |   |
| 4  | HAK   |                                                                                          |   |
| 4  | .1    | HARMONIZATION OF ABSORPTION MEASUREMENTS.                                                |   |
|    | .2    | HARMONIZING CONVERSION OF ABSORPTION INTO EBC MASS CONCENTRATION USING SITE-SPECIFIC MAC |   |
| 4  | .3    | FAPs MEASUREMENT UNCERTAINTIES                                                           |   |
| 5  | DAT   | A MANAGEMENT                                                                             |   |
| ,  | DAN   | -EUROPEAN OVERVIEW OF EBC MASS CONCENTRATIONS IN URBAN EUROPE9                           |   |
| ь  | PAN   |                                                                                          |   |
| 6  | .1    | INTRODUCTION                                                                             |   |
| 6  | .2    | EBC SPATIAL VARIABILITY IN URBAN EUROPE                                                  |   |
| 6  | .3    | TREND ANALYSIS OF EBC                                                                    |   |
| _  | .4    | DETERMINATION OF SITE-SPECIFIC MAC                                                       |   |
| 6  | .5    | SPATIAL VARIABILITY AND SEASONALITY OF EXPERIMENTAL MAC.                                 | 1 |
| 7  | RECO  | OMMENDATIONS AND MAIN FINDINGS                                                           |   |
| 7  | .1    | RECOMMENDATIONS ON MEASUREMENTS.                                                         | 2 |
|    | 7.1.1 | 1 Sampling system                                                                        | 2 |
|    | 7.1.2 |                                                                                          |   |
| 7  | .2    | RECOMMENDATIONS ON DATA MANAGEMENT.                                                      | 2 |
| 7  | .3    | MAIN FINDINGS FOR EBC OBSERVATIONS AT URBAN SITES ACROSS EUROPE                          | 2 |
| 7  | .4    | RECOMMENDATIONS ON EBC MEASUREMENTS FOR POLICY MAKING SUPPORT                            | 2 |
| 8  | REFE  | ERENCES                                                                                  |   |
|    |       |                                                                                          |   |





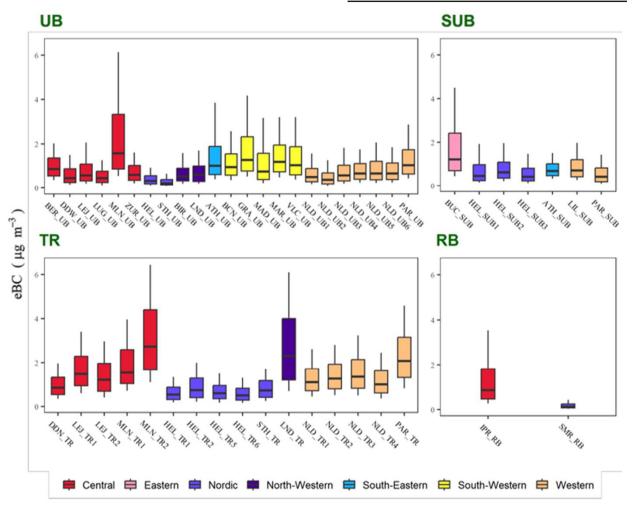




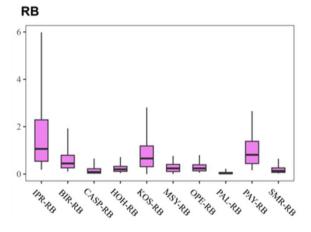


https://riurbans.eu/project/#service-tools

Savadkoohi et al. (2023)


**Figure 1**. Distribution of the monitoring sites with eBC data. UB: urban background; SUB: suburban background; TR: traffic; RB: regional background. Modified from Savadkoohi et al. (2023).







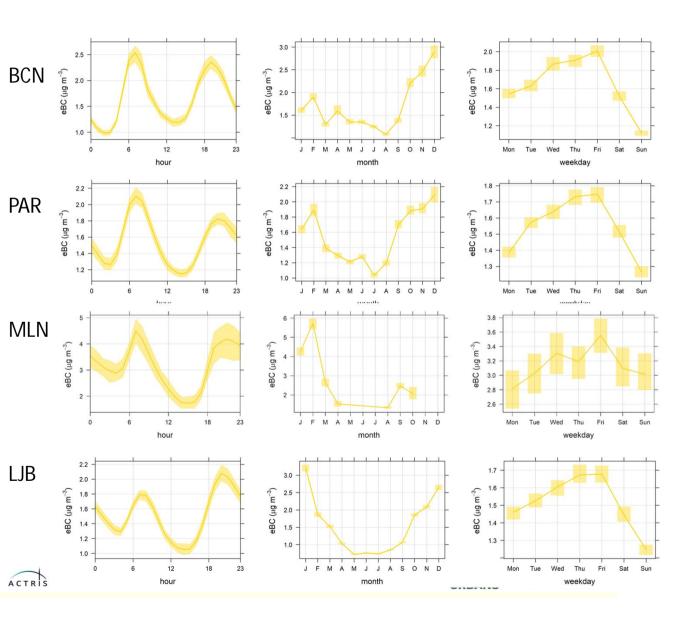





https://riurbans.eu/project/#service-tools

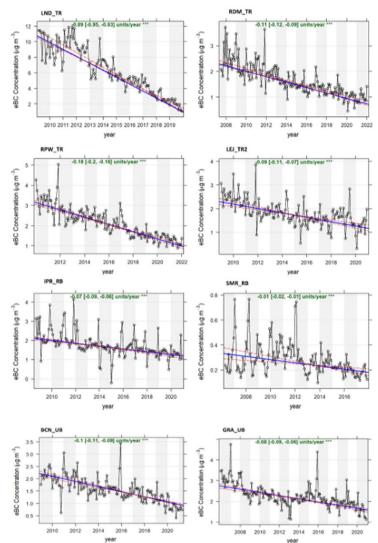


Savadkoohi et al. (2023)


**Figure 2**. Variability of hourly averaged eBC mass concentrations at 50 sites between 2017 and 2019 categorized by the type of site and region. Modified from Savadkoohi et al. (2023).












https://riurbans.eu/project/#s ervice-tools





https://riurbans.eu/project/#service-tools

Savadkoohi et al. (2023)









## **Courtesy of Aerosol Magee Scientific**

#### 1.Pricing for New Instruments

- o The price range for a new instrument is between €27,000 and €37,000, depending on the model.
- o Notably, we offer a discount on our AE33 model. Depending on the project scope, the final price for the AE33 can be significantly lower than €27,000.

#### 2.Consumable Costs

- o All Aethalometers use the same consumables: filter tape and cartridge filters. These are the only two required consumables.
- On average, the annual consumption per instrument is 2-3 filter tapes and one cartridge filter, with a total cost of approximately €500 per year. The consumption of the filter tape depends on the concentrations measured by the instrument or, indirectly, on the location where it is installed.

#### 3. Maintenance Requirements

Standard maintenance includes flow calibration and routine checks of optical and electronic components twice a year. Importantly, these procedures can be performed by the user and do not require the involvement of certified or trained technicians. As such, there are no additional mandatory maintenance costs.

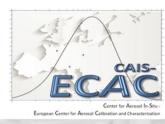
#### 4. Optional Annual Service and Maintenance

- Aerosol offers an optional Annual Service and Maintenance package. This comprehensive service includes:
  - § Full physical inspection of the unit.
  - § Hardware upgrades to the latest released series.
  - § Software upgrades to the latest released version.
  - § Identification of potential issues.
  - § Complete unit testing, including flow calibration, verification, clean air tests, ND tests, stability checks, leakage tests, long-term indoor testing, and comparison with reference instruments.
  - § Data inspection and compilation of a Final Inspection Record (FIR).
- While this service is optional and not mandatory, it provides additional peace of mind. The cost for this service is approximately €2,000.




















# **MANY THANKS!**

Marco Pandolfi, IDAEA-CSIC marco.pandolfi@idaea.csic.es









EUROPEAN REFERENCE LABORATORY FOR AIR **POLLUTION** 



